
Design and Implementation of a Real-time Video Player on Tiled-Display System

Giseok Choe, Jeongsoo Yu, Jeonghoon Choi, Jongho Nang
Dept of Computer Science and Engineering,

Sogang University, Seoul, Korea
{brix, yjs, drumist, jhnang}@sogang.ac.kr

Abstract

This paper presents a design and implementation of re-
altime video player that operates on a tiled-display system
consisting of multiple PCs to provide a very large and high
resolution display. In the proposed system, the master pro-
cess transmits a compressed video stream to multiple PCs
using UDP multicast. All slaves(PC) receive the same video
stream, decompress, clip their designated areas from the
decompressed video frame, and display it to their displays
while being synchronized with each other. A simple syn-
chronization mechanism based on the H/W clock of each
slave is proposed to avoid the skew between the tiles of the
display, and a flow-control mechanism based on the bit-rate
of the video stream and a pre-buffering scheme are pro-
posed to prevent the jitter. The proposed system is imple-
mented with Microsoft DirectX filter technology in order
to decouple the video/audio codec from the player. Exper-
imental results on a tiled display system with 28 PCs show
that the proposed system could display a video stream in a
realtime without jitter and skew.

1 Introduction

A tiled-display system consists of multiple display de-
vices linked in a grid configuration to provide a very large
display with a very high resolution, and is typically used
in common cooperative environments of virtual spaces that
feature the VR technology. In order to display a large
graphic object or a video stream on this display system, the
display on these tiles should be carefully controlled. There
have been a lot of researches[1, 2, 3, 4] to devise a syn-
chronization mechanism to control this display for playing
the sequence of video frames. However, these previous re-
searches assumed an uncompressed video stream, or used
a complex TCP-based synchronization algorithm[1, 2] to
temporally control the display of each video frame.

This paper proposes a realtime video player that can play
a compressed video stream on the tiled display system with-
out jitter and skew. There are two problems to be resolved to

build such a video player system. One is how to divide and
deliver the video stream to each PC so that it could display
the designated part of video frame image, and the other is
how to temporally synchronize these displaying operations
of all PCs so that the whole video frame image is displayed
on the tiled display temporally together. This paper pro-
poses an algorithm in which the master process broadcasts
the video stream in a compressed form, and the slaves (or
players) decode the video stream , clip their own areas, and
play back on their display tiles. This approach could re-
duce the loads for the network as well as the master pro-
cess. Moreover, there is an advantage in that since iden-
tical stream is delivered to all players, UDP multicast can
be used for efficient broadcasting. As for the synchoniz-
ing of display operations, we propose a simple synchroniza-
tion scheme in which all players only reference their H/W
clocks after the start time of the each player is synchronized.
It is proved experimentally that this simple synchroniza-
tion scheme is enough for realtime video play application
on tiled display system and inherently scalable. This pa-
per also proposes a control flow and buffering mechanism
based on the bit-rate of video stream that helps to avoid the
jitter of the realtime video playing. The proposed system is
implemented with Microsoft DirectX filter technology [5] to
prevent the codec-dependent problems frequently occurred
in building an application based on the video player. Ex-
perimental results on the tiled display system consisting
of 28 PCs show that the proposed schemes could display
the video stream on tiled display system without the jitter
and skew between tiles. Furthermore, this system operates
regardless of the codec used in the video stream because
all DirectX video/audio decoding filters could be embedded
easily into the system.

2 Related Works

There are two technical aspects required for implement-
ing video player on the tiled-display. One is the technol-
ogy to deliver the video stream to multiple players in real-
time, and the other is to synchronize the play back of the
video frame that are partitioned and spread on the multi-

Seventh International Conference on Computer and Information Technology

0-7695-2983-6/07 $25.00 © 2007 IEEE
DOI 10.1109/CIT.2007.36

621

Figure 1. Overall System Architecture

ple PCs. There are some schemes[1, 2, 3, 4] developed and
used in the previous video player systems on tiled display.
Most systems have separate communication networks for
broadcasting video or graphic objects and for sending the
synchronization data. Moreover, realtime broadcasting over
Gigabit Ethernet is generally implemented using the broad-
cast feature of the UDP protocol. On the other hand, syn-
chronization is achieved using the reliable TCP protocol,
and the corresponding packets are assigned with a high pri-
ority and regularly sent over the network for reduced delay
and increased reliability. However, synchronization based
on the regularly transmitted data can potentially result in
errors caused by transmission delays among the PCs, and
there is the problem of overheads associated with the de-
livery of the synchronization packets for each video frame.
The approach proposed in this study does not require any
synchronization message after the players are initialized,
but could synchronize the playing of video frame precisely.

3 Design of Realtime Video Player

The realtime video player proposed in this paper, as
shown in Figure 1, consists of a manager PC that initiates
and manages the video playing session on multiple tiles,
the master that multicasts the video stream to the slaves that
participate in that session, and a set of slaves that decodes
the received video stream and displays the part of video
frame to tiles (or display) in a synchronized fashion. Note
that there could be multiple sessions on the tiled display sys-
tems, but we assume that the slave is restricted to participate
in only one session.

3.1 Partitioning and Delivery of Video
Frame

There are three possible ways to partition and play a sin-
gle video source on tiled-display. First is the master decom-
presses the video stream and gets a video frame in raw, par-

titions the video frame according to each area of the tiled-
display, and transmits the partitioned video frames in raw
format to each slave (or player) separately. This approach
does not require the player to decode the video data, and
there is an advantage of using a relatively simple player.
However, delivery of uncompressed video requires a high
network load. Second is the same as the first one but the
master re-compresses the partitioned video frame before
transmission in order to save the network bandwidth. In
this case, compressing the partitioned images increases the
system load, making it inappropriate for realtime transmis-
sion. More importantly, since these two approaches require
that the master should send the partitioned video frames (in
a raw or compressed form) to multiple slaves separately (via
multiple unicastings), they are not scalable to the number of
slaves participating the session. Third, proposed in this pa-
per, is that the master multicasts the compressed video data
and sends the image coordinate information to the slave re-
garding the areas to be displayed. The slave then decom-
presses the video frame, clips the decoded frame according
its assigned the coordinate, and finally displays it to its tile.
Although this approach requires that all slaves decode the
same video frame independently so that the CPU resources
of the slaves are wasted on the whole, it helps to reduce
the CPU resources of the master because the video stream
is delivered in the original compressed form, and to save
the network bandwidths because the video stream could be
multicasted. This approach also have an advantage that it
can be applied regardless of the number of slaves partici-
pating the sessions.

3.2 Synchronization Mechanism

One of the ways of achieving synchronization for play-
ing a video stream on multiple tiles is that the master reg-
ularly multicasts a kind of “synchronization” message to
all slaves as used in [1, 2, 3, 4]. However, such an ap-
proach creates a lot of overheads for sending the synchro-
nization messages and there is the difficulty of realizing ac-
curate synchronization due to the difference in delay of the
synchronization data transmission and processing. Further-
more, there should be a mechanism that the master knows
that all slaves are ready to display the next frame that re-
quires a lot of time and network resources.

In the proposed synchronization scheme, the slave refer-
ences the stream time that is incremented by its own H/W
clock periodically after initialized by the master, when dis-
playing the decoded video frame to its tile. Let us explain
this mechanism in more detail. Usually, some kinds of time
stamps are attached to each presentation unit of multimedia
data (for example, video frame and audio sample) when it
is recorded. The presentation unit is displayed at the player
when its time stamp is matched with the media stream time
that is set to zero when the playing is started and incre-

622

mented periodically. If the media stream times of the slaves
are started at the same time and they are incremented at
the same rate, the display of partitioned video frames could
be synchronized temporally because all slaves received the
same video stream from the master.

Figure 2 shows the proposed synchronization algorithm
that is used to display the video stream on tiled display syn-
chronously. Let TM

base and TSi

base be the value of system
clock (or H/W clock) of the master and i-th slave, respec-
tively. When the session is initialized, they are first synchro-
nized using Cristians algorithm[9]. After TM

base and TSi

base

are synchronized, the master broadcasts the start time of the
media stream time, TM

start, to all slaves. The start time is
determined by considering the transmission delay (di) and
initial buffering time (InitialBufferingT ime : IBT).
Then, the master starts to multicast the video stream in
compressed form to all slaves, and the slaves receive the
video stream and start to decode and display it. Note that
these two tasks are executed concurrently in order to display
while receiving. The i-th slave display the video frame to
its tile only when the current stream time (TSi

stream) reaches
to the time stamp of j-th video frame, T frame

j . Note that
since the stream time of the slave is independently and pe-
riodically incremented by its own hardware clock (RTC -
Real Time Clock), TSi

stream ← ReadRTC() −TSi
start, and

differences in the period of RTC between slaves are neg-
ligible, the stream times of all slaves could be the same
all the time. It implies that the video frames could be dis-
played at the multiple tiles synchronously as shown in our
experiments. This synchronization algorithm is simple and
scalable because it does not require repeated synchroniza-
tion messages for each video frame and the synchronization
overhead is not a function of the number slaves participating
the session.

3.3 Control Flow Mechanism

The media data transmission method could be roughly
classified into “the burst mode” in which the transmission
rate is irregular in time, whereas “the constant mode” in
which the transmission rate is regular in time. Since “the
constant mode” requires a lot of CPU resources in order
to continuously transmit the media data, “the burst mode”
transmission is deployed in the proposed system. That is
the master periodically multicasts video data to slaves, and
the amount of data to transmit at each period is only for one
media sample (i.e., video frame). Since the video stream is
usually VBR-coded, the amount of video data to be trans-
mitted is different at each period. However, it could cause
a buffer overflow at the slave. This problem is resolved in
the proposed system by adjusting the size of socket buffer
to be larger than the maximum data size of video frame in
a compressed form. Unfortunately, this maximum data size
of video frame is unknown until all video frames are trans-

//T M
base and T

Si
base

: the value of system(or H/W) clock of the master and
i-th slave, respectively.
//k is the number of slaves in the session
//Segm is the presentation unit in a compressed form
//di: the transmission delay.
//M, Si: the master and i-th slave, respectively.
procedure VIDEOPLAYERMASTER

//Synchronize T M
base and T

Si
base

using Cristian’s algorithm[9]
for ∀ slaves, Si(1 ≤ i ≤ k), participating the session do

T M
base ← ReadRTC(); //Read the system clock

SendMsg(Si, T M
base);

ttmp ← RecvMsg(Si);
T M

current ← ReadRTC();
//Compute the transmission delay
di ← (T M

current − T M
base − ttmp)/2;

SendMsg(Si, di);
end for
//Send the start time to all slaves
T M

current ← ReadRTC();
T M

start = T M
current + avg(di) + IBT ;

Multicast(Si(∀i, 1 ≤ i ≤ k), T M
start);

//Multicast the segment of video stream, Segm, to all slaves
m← 0;
while not EOF(Segm) do

ReadSeg(Segm);
Multicast(Si(∀i, 1 ≤ i ≤ k), Segm);
m← m+1;

end while
end procedure

procedure VIDEOPLAYERSLAVE(Si)
// Synchronize T M

base and T
Si
base

using Cristian’s algorithm[9]
T M

base ← RecvMsg(M);
T

Si
1 ← ReadRTC(); T

Si
2 ←ReadRTC();

ttmp ← T
Si
2 − T

Si
1 ;

SendMsg(M, Ttmp);
di ← RecvMsg(M);
T

Si
base

← T M
base + di;

T M
start ← RecvMsg(M); //Receive the start time from the master

j ← 0;
parbegin

//Do the tasks to receive the video segment and to
decode/display concurrently
do//Receive the video segment and insert to StreamingBuffer[]

m← 0;
while not EOF(Segm) do

Segm ← RecvMsg(M);
WritetoBuffer(Segm); m← m + 1;

end while
end do
do//Get the video segment from buffer and decode/display

T
Si
current ← T

Si
base

+(ReadRTC() - T
Si
1);

Wait(T M
start − T

Si
current);

T
Si
start ← ReadRTC(); T

Si
stream ← 0;

j ← 0; m← 0;
while not EOF(Segm) do

Segm ← ReadfromBuffer();
Fj ← Decode(Segm);
T frame

i
← GetTimeStamp(Fj);

T
Si
stream ← ReadRTC() - T

Si
Start

;

Wait(T frame
j

− T
Si
stream); DisplayFrame(Fj);

m← m + 1; j ← j + 1;
end while

end do
parend

end procedure

Figure 2. Delivery and Synchronization Algo-
rithms of Master and Slave

623

mitted. In the proposed scheme, it is approximated with the
following equation, where MAXbps is the maximum bit
rate of video stream that could be roughly estimated, and
fps is the frames per second that is a constant in the video
stream;

Maximum Media Sample Size =
MAXbps

fps
(1)

In the case of burst mode transmission, since there could
be a transmission collision because a lot of data are trans-
mitted at a burst and there could be multiple sessions being
serviced in the network, it could lead the jitters in video
playing. In order to avoid this jitter, another buffer is em-
ployed in the slave.The slaves initially buffer some video
data for a pre-defined time interval (IBT) before starting
the video playing. The amount of data to be buffered ini-
tially is computed as follows, where Avgbps is the average
bits-per-second of the video stream to transmit.

Amount of Initial Buffering = IBT ×Avgbps (2)

Although this initial buffering causes some latency in start-
ing the video playing, it greatly helps to avoid the jitter
as shown in our experiments. In the case of physically
closed network as in our tiled-display environment where
all PC are connected to the same physical network, the ini-
tial buffering time less than one second (IBT < 1sec) is
enough to avoid the jitter as shown in our experiments.

4 Implementation with Microsoft DirectX
Technology

When implementing video-related applications,
the codec (encoder/decoder) used for compress-
ing/decompressing the video stream should be available
in an API level to control the open/play/pause/stop/record
operations for video recording/playing. Furthermore, since
there are a lot of codecs that are widely used in various
video applications, the video player should embed the
various multiple video/audio codecs to develop a practical
application. Unfortunately, it is usually impossible in real
environments. In order to avoid this problem, we have
implemented the proposed realtime video player with Mi-
crosoft DirectX technology[5] in which various audio/video
codecs as well as audio/video renders are available as
independent engines called filters. By connecting various
kinds of these filters, we could decouple the codec-related
problems from the application development so that a lot of
video-related applications could be developed easily.

Figure 3 shows the internal structure of the realtime
video player on tiled display system, in which the filters
that are developed in this research are filled with the gray
color. The master process consists of the source filter and
multicast filter. The source filter reads the video source

and demultiplexes into audio and video streams. The mul-
ticast filter makes a packet for each presentation unit (video
frame or a set of audio samples) with the header required
for UDP multicasting, and multicasts it to all slaves that
participate the session. Since the time stamps of the pre-
sentation units could be obtained from the DirectX source
filters, they are packetized together in order to control the
displays on slaves. Since the multicast filter is implemented
by inheriting the “Base Render filter” of DicrectShow, it
is activated only when the stream time reaches to the time
that the time stamp of presentation unit indicates. It means
that the multicast filter could transmit the video stream at a
rate identical to the bit-rate of video (or audio) stream.

The player process at slave consists of the receiver filter,
audio/video decoder filters, overlay filter, and renderer fil-
ter. The receiver filter reads the data over the UDP socket
interface, performs de-packetization as well as buffering as
shown at the 1st part of parbegin of VideoPlayerSlave() in
Figure 2. The buffered audio and video data are forwarded
to audio and video decoder filters, respectively, in order to
generate audio/video data in raw format. The overlay fil-
ter clips the video frame, stretches it if required, and trans-
forms it for edge-blending. The resulting image is delivered
to renderer filter to be displayed on the tile. The render filter
display the decompressed-, clipped-, stretched-video frame
into its tile while synchronizing with other slaves using the
algorithm presented at the 2nd part of parbegin of Video-
PlayerSlave() in Figure 2.

Note that since the filters presented in Figure 3 run con-
currently, a realtime streaming video playing could be pro-
vided if the audio/video decoding filters can decode the au-
dio/video streams in realtime. Note also that, by substitut-
ing the video decoder and audio decoder shown in Figure 3,
a lot of video streams compressed with various formats (for
example, MPEG-1, MPEG-2, MPEG-4, WMV, ASF, AVI,)
could be played on the tiled display system.

5 Experiments and Analyses

We have implemented the proposed realtime video
player on tiled display system consisting of 28 PCs (In-
tel Dual Core 3.4GHz CPU, 1GB DDR2 memory,Gigabit
LAN card, connected with 3COM 1GBit hub. The video
samples with various resolutions(640 × 352, 1280 × 720,
etc) and codecs(MPEG-1, MPEG-2, Xvid MPEG-4, WMV)
are used to experiment the synchronization and flow control
mechanisms of the realtime video player. Figure 4 shows
the sample snapshots of the realtime video player on tilted
display with multiple sessions.1

1A demo video could be found at
http://mmlab.sogang.ac.kr/tdisplay/demo high.wmv

624

Figure 3. Internal Structures of Master and Slave Processes

Figure 4. Snapshot of the Video Player on
Tiled Display System with 28 PCs

5.1 Experiments on Synchronization
Mechanism

As explained in Section 3.2, the video player at slave Si

displays the uncompressed/clipped j-th video frame (Fj)
only when it stream time(TSi

stream) reaches to the time
stamp of j-th frame (T frame

j). In order to show that the
stream times of all slaves are incremented synchronously
and eventually all tiles are display synchronously, the
stream times and sync offset (the difference between the
time in time stamp and actual display time) of all players are
measured and shown in Figure 5(a) and Figure 5(b), respec-
tively. As shown in these experiments, the stream times are
incremented synchronously and the sync offset are always
zero. From these experiments, we can argue that the pro-
posed synchronization mechanism works precisely. Actu-
ally, since the stream times are incremented by H/W clocks
of PCs, it could be always the same although they are incre-
mented independently.

5.2 Experiments on Control Flow Mecha-
nism

In order to avoid the jitter, the video stream should be
buffered before the actual playing starts. If a lot of video

streams are pre-buffered, the jitter could be avoided but
the actual playing should be delayed for a long time. The
problem of how many data streams should be buffered is
generally the main design issue when implementing the
video player operating in streaming mode. In the proposed
scheme, the amount of video data to be pre-buffered is con-
trolled by the parameter “IBT ” as shown in Eq.2. As
shown in Figure 6(a), if IBT is set to zero second (i.e.,
no prebuffering), some jitters2 are occurred when playing
the video. However, if it is greater than 1 second, the video
stream could be played stably without any jitter. Figure 6(b)
show the jitter of the video playing when there are 14 ses-
sions being serviced concurrently. It shows that there is also
no jitter after it is initialized. Of course, the initial buffering
time required to avoid the jitter depends on the network sta-
tus and characteristics of VBR coding so that it is very hard
to predict accurately. However, from our extensive exper-
iments, we find out that pre-buffering of video stream for
playing one second is enough to avoid the jitter in an envi-
ronment that the tiled display system operates (i.e., directly-
connected closed network environment).

6 Concluding Remarks

The tiled display system was developed to provide a
large and high resolution display. It is usually implemented
with multiple PCs connected in a grid configuration. In or-
der to display a video stream on this tiled display system,
the problems of delivery of video stream to multiple PCs,
synchronization of display tiles, and flow control should be
resolved. In this paper, we proposed a delivery mechanism
that the master multicasts the compressed video stream to
multiple slaves and let the slave decodes and displays the
part of video frame on their tiles independently, a synchro-
nization mechanism that the slave references its own stream

2DirectX provide an interface to measure the jitter at time tn that is the
average jitter from the start time (t0) to time tn. That is the reason why
there is a jitter at time tn in graph although there is no jitter at time tn

625

(a) Stream Times of all Slaves

(b) Sync Offsets of all Slaves

Figure 5. Experiments on Synchronization
Mechanism

time incremented by H/W clock after initialized, a mecha-
nism that helps to avoid the jitters when playing the video in
streaming mode. The proposed algorithms are implemented
with DirectX technology, and experimented with a tiled dis-
play system with 28 PCs. The experimental results show
that the proposed delivery, synchronization, and control
flow mechanisms works precisely regardless of the video
codec, the bit-rate of video streams, the number of slaves,
and finally the number of sessions being serviced. The pro-
posed system could be used to build a cost-effective tiled
display system without any extra hardware for synchroniza-
tion and control flow. The problem of how to move/resize
the display area of video frame while playing is remained
as a future work.

References

[1] University Illinois, Scalable Adptive Graphics En-
vironment , http://www.evl.uic.edu/cavern/sage/ de-
scription.php, 2007.

[2] R. Singh, B. Jeong, L. Renambot, A. Johnson and
J. Leigh, “TeraVision: a Distributed, Scalable, High
Resolution Graphics Streaming System,” in Proceed-
ings of the 2004 IEEE International Conference on
Cluster Computing , pp. 391-400, 2004.

[3] Y. Zhao and X. Zhang, “Design a secure and scalabel
CVE: The Access Grid,” in Proceedings of the 2001

(a) Jitters vs IBT

(b) Jitters when playing multiple sessions (IBT = 1sec)

Figure 6. Experiments on Control Flow Mech-
anism

ACM/IEEE Conference on Supercomputing , 59-59,
2001.

[4] H. Chen, D. Clark, Z. Liu, G. Wallace and K. Che,
“Software Environments for Cluster-Based Display
Systems,” in Proceedings of the 1st International Sym-
posium on Cluster Computing and the Grid , pp. 202-
210, 2001.

[5] Microsoft MSDN, DirectShow , http://msdn2.
microsoft.com/en-us/library/ms783323.aspx, 2007.

[6] E. Magana, J. Aracil and J. Villadangos, “Packet
Video Broadcasting with General-Purpose Operating
Systems in an Ethernet,” in proceedings of Multime-
dia Tools and Applications , Vol.24, No.1, pp.5-28.
Sep.2004.

[7] Ralf Steinmetz and Klara Nahrstedt, Multimedia:
Computing, Communications and Applications , Pren-
tice Hall, 1995.

[8] ETSI, TS 126 234 v6.4.0 Release 6 Protocol and
codecs , 2005.

[9] A. Tanenbaum and M. Steen, Distributed Systems
Principles and Paradigms , Prentice Hall, 2002.

626

