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Many feature subset selection algorithms have been proposed and discussed for 

years. However, the problem of finding the optimal feature subset from full data still re-
mains to be a difficult problem. In this paper, we propose novel methods to find the rele-
vant feature subset by using biologically-inspired algorithms such as Genetic Algorithm 
and Particle Swarm Optimization. We also propose a variant of the approach considering 
the significance of each feature. We verified the performance of the proposed methods by 
experiments with various real-world datasets. Our feature selection methods based on the 
biologically-inspired algorithms produced better performance than other methods in terms 
of the classification accuracy and the feature relevance. In particular, the modified method 
considering feature significance demonstrated even more improved performance. 
 
Keywords: genetic algorithm, particle swarm optimization, feature redundancy and rele-
vance, wrapper approach, inductive learning algorithm 
 
 

1. INTRODUCTION 
 

Feature subset selection is about finding the optimal subset of features, among the 
full features, that renders the best performance in terms of well-defined criteria such as 
the classification accuracy in labeled data and the total cost associated with feature sub-
sets [1-3]. The importance of feature selection in machine learning stems from its ability 
to improve such learning performance. In other words, through feature selection, we can 
reduce the cost of learning (both the acquisition cost/risk of feature values and the com-
putational overhead in learning) and obtain higher classification accuracy, compared to 
the learning with the entire feature set. 

In order to handle the inherent exponential complexity of the task (i.e. the existence 
of exponential number of candidate subsets), a number of approaches to feature subset 
selection have been proposed in the literature [1-21], which are based on diverse search 
strategies. (See [1-3, 9-12] for surveys.) First, an exhaustive search was employed to find 
the best feature subset under certain criteria [4, 5]. In this approach, the candidate feature 
subsets are evaluated with respect to the performance measure and an optimal feature 
subset is found using exhaustive search. However, exhaustive search is computationally 
infeasible in practice, except in those rare instances where the total number of features is 
quite small. Therefore, a number of researchers have explored the use of heuristics or 
randomized algorithms for feature subset selection. For instance, features were either 
selected (starting from an empty feature subset) or eliminated (starting from the entire fea- 
ture set) sequentially to determine the final feature subset [6-8]. Heuristics such as mu-
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tual information, relevance, and relevance of each feature were also employed to find the 
optimal feature subset [13-17]. In addition, several authors explored the use of random-
ized population-based heuristic search techniques for feature subset selection [3, 18, 19]. 

Though each of the various approaches described above has its own rationale and 
criterion for finding quality feature subsets, it has demonstrated limited success and the 
feature subset selection still remains as a difficult task. Against this background, we aim 
to develop novel feature subset selection methods that produce quality solutions in terms 
of search criteria (e.g. classification accuracy, feature costs). More precisely, the new 
method combines biologically-inspired algorithms and well-defined heuristics expecting 
to inherit the merits of each approach, based on our previous experimental work on the 
task [20, 21]. 

Biologically-inspired (or bio-inspired in short) algorithms have been contrived based 
on the principles of the behavior of organisms, and applied to mainly optimization prob-
lems [22-26]. Among the various approaches, we consider two bio-inspired algorithms in 
this paper: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). GA is based 
on the survival of the fittest and tries to find the best solution through evolutionary proc-
esses of crossover and mutation among the individuals in the search space. PSO mimics 
the phenomenon of the swarm (or flocking) of creatures and attempts to find the best solu-
tion by changing the form of the swarm of individuals. As the bio-inspired algorithms 
are known to be generally quite effective for rapid global search of large search space in 
difficult optimization problems, we aim to combine the bio-inspired algorithms (as a 
wrapper defined in [3]) with inductive learning algorithms in a bid to find the optimal 
feature subset that yields the best performance. (See [27-29] for explanations on induc-
tive learning algorithms.) Feature subset selection algorithms are said to follow a filter 
approach if feature selection is performed independently of the learning algorithm used, 
and said to follow a wrapper approach otherwise. In addition, we compare the perform-
ance of bio-inspired approaches to those of several state-of-the-art approaches, and fi-
nally propose new algorithms for feature subset selection. To this end, we combine the 
bio-inspired methods with the well-defined significance (or relevance) of each feature 
(by mRMR [13] as described in section 3) which was verified to be the best heuristic in 
[20, 21]. 

The rest of the paper is organized as follows: Section 2 briefly describes some of 
the characteristics that need to be considered in feature subset selection. Section 3 in-
cludes detailed descriptions on our approach that uses bio-inspired algorithms combined 
with inductive learning algorithms and the significance of a feature in subset selection. 
Section 4 explains the various real-world data and experimental setup designed to evalu-
ate the performance of our approaches, followed by the results of experiments presented 
in section 5. Section 6 concludes with summary and discussion of some directions for 
future research. 

2. CHARACTERISTICS OF FEATURE SUBSET SELECTION 

Ideally, feature selection methods should choose the optimal feature subset from the 
candidates that best describes the target concept inherent in the data. The following as-
pects need to be considered in the process of feature selection. 
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2.1 Starting Point 
 
First, we must determine the starting point in the feature space and the direction of 

search. The search can start with no features (i.e. empty subset), and keep adding fea-
tures in the subset. Or, it can start with all features (i.e. full subset), and keep eliminating 
features. The former is called forward selection, and the latter is known as backward 
elimination [3, 10]. Generalizing the idea of forward selection and backward elimination, 
we can start the search with any number and combination of features. 

 
2.2 Search Strategy 

 
Theoretically, the best feature subset can be found by evaluating all the possible 

subsets. However, such an exhaustive search of the feature space needs to explore all of 
2n possible subsets of n features, which is impractical for large number of features. There- 
fore, we have to resort to more realistic approaches. As described in section 1, a variety 
of approaches have been proposed for this purpose [1-21]. Though these approaches are 
practical, they are not guaranteed to find the optimal subset of features. This is natural 
because those approaches sacrifice the quality of the feature subset (to an acceptable 
degree) for the computational overhead (avoiding the exponential complexity). It is thus 
of importance to find a good algorithm considering this trade-off. 
 
2.3 Subset Evaluation 

 
After generating candidate feature subsets, we need to evaluate them. As aforemen-

tioned, a feature subset selection algorithm is termed either wrapper or filter approach by 
whether it makes use of a learning algorithm for evaluating feature subsets or not. In 
other words, the wrapper approach determines the goodness of a feature subset by ap-
plying it to a learning algorithm and evaluate the performance (e.g. by the classification 
accuracy). On the other hand, the filter approach evaluates features using some measures 
independent of the learning algorithm (e.g. mutual information [28], mRMR [13]). 

 
2.4 Stopping Criteria 

 
Finally, we must decide the criteria for halting the search. For example, we can stop 

adding or removing features when none of the alternatives improves the performance, or 
when the number of selected features reaches a pre-determined threshold [11]. We can 
then choose the best subset among the candidates we have encountered during the search. 

3. BIO-INSPIRED APPROACHES TO FEATURE SUBSET SELECTION  

Feature subset selection is a hard task and not efficiently manageable when the di-
mensionality of the feature space is high. Bio-inspired algorithms are appropriate candi-
dates to the task, producing quality solutions within reasonable amount of time and ef-
forts. We propose wrapper-based approaches to feature subset selection based on two 
kinds of bio-inspired algorithms as described in this section. 
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3.1 Bio-Inspired Algorithms 
 
Bio-inspired algorithms have been conceived based on the principles of the behavior 

or the phenomena in living organisms and creatures, such as gene evolution, insect swar- 
ming, bird swarming, food foraging, and the like [25]. Bio-inspired algorithms are well- 
known for their applicability to optimization problems. Each individual in a bio-inspired 
algorithm represents a candidate solution to the problem, and the algorithm converges to 
the optimal solution (under certain assumptions) through the evolutionary interactions of 
the individuals in the solution space. 

There exist a variety of bio-inspired algorithms [22-25], among which the Genetic 
Algorithm (GA), and the Particle Swarm Optimization (PSO) are considered in the paper. 
(Yet another popular bio-inspired algorithm, the Ant Colony Optimization (ACO) was 
experimentally proven to perform comparable to GA in our previous work [19] and is 
thus not considered in this paper.) 

A fitness function is an objective function that quantifies the optimality of a solution 
(i.e. individual) in bio-inspired algorithms including GA and PSO. In this paper, the fit-
ness function is defined by the accuracy of a learning algorithm. That is, each individual 
is evaluated by the learning accuracy based on the feature subset it represents. The bio- 
inspired algorithm attempts to find the best feature subset through evolution by wrapping 
the evaluation process of candidate solutions. 

 
3.2 Feature Subset Selection using Genetic Algorithm (GAFSS) 

 
The Genetic Algorithm (GA) is one of the bio-inspired algorithms using techniques 

inspired by evolutionary biology such as inheritance, mutation, selection, and crossover 
[23]. Typically, solutions (called individuals or chromosomes) are represented as strings 
in GA. The evolution starts from a population of randomly generated individuals and 
happens in generations. In each generation, the fitness of each individual is evaluated, 
and multiple individuals are stochastically selected from the current population based on 
their fitness, and modified to form a new population by genetic operations such as cross- 
over and mutation. The new population is then used in the next iteration of the algorithm. 
The algorithm terminates when either the maximum number of generations has been rea- 
ched, or a satisfactory fitness level has been obtained for the population. 

In our GA-based feature subset selection, each individual is represented as a binary 
string encoding a feature subset. If the data consist of N features, an individual will be an 
N-bit binary string. If a bit is 1 the feature is chosen in the feature subset; if 0 it is not. 
Each individual in the population is thus a candidate feature subset. The initial popula-
tion, whose size is set to 40 in our experiments, consists of randomly generated such 
individuals. The selection, crossover, and mutation processes are implemented in a stan-
dard way of GA [23]. That is, a fitness-proportionate selection is used for choosing mat-
ing pairs of individuals; a single-point crossover was adopted for crossover operation 
with the probability of 0.6; and mutation operation was applied to flip each bit of an in-
dividual (i.e. either from 1 to 0 or from 0 to 1) with the probability of 0.03. The maxi-
mum number of generation was set to 20 in our experiments. The parameter settings 
were based on results of preliminary runs. 
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3.3 Feature Subset Selection Using Particle Swarm Optimization (PSOFSS) 
 
Particle Swarm Optimization (PSO) is a stochastic, population-based evolutionary 

algorithm introduced by Kennedy and Eberhart [22, 24]. Similar to GA, a population of 
individuals (or particles) is initialized as candidate solutions for a given problem in PSO. 
The particles iteratively evaluate the fitness of the candidate solutions and remember the 
location where they had their best fitness. The particle’s best solution is called the parti-
cle best (pbest) or the local best (lbest), and the best single solution among all of the par-
ticles is called the global best (gbest). In the solution space, each particle makes suitable 
changes in its position and velocity iteratively with respect to the best solutions. 

Let Xi
(t) = (xi1, xi2, xiD) be the position (vector) of particle i and Vi

(t) = (vi1, vi2, …, viD) 
be the velocity (vector) of particle i at time t in D-dimensional space, respectively. Then 
particle i changes its position and velocity iteratively as follows, 

 
Vi

(t) = Vi
(t-1) + c1(Pi − Xi

(t-1)) + c2(Pg − Xi
(t-1))  (1) 

Xi
(t) = Xi

(t-1) + Vi
(t) (2) 

 
where Pi = {pi1, pi2, …, piD} is the pbest of particle i, Pg = {pg1, pg2, …, pgD} is the gbest 
of all particles, and c1 and c2 are cognitive factors, respectively. As the algorithm contin-
ues, the fitness of the global best solution keeps improving. 

To handle the feature subset selection task with PSO, we followed the same ap-
proach that we used in GA. Like the chromosomes in GA, each particle in the swarm 
represents a candidate feature subset. We also define the position vector of a particle as a 
binary string and the fitness function as the accuracy of a learning algorithm. 

Because of the binary values in the position vector of particles, we need to modify 
the operations (1) and (2) of PSO accordingly. We followed the modified PSO operations 
suggested by Kennedy and Eberhart [24]. Let ( )t

idx  be the dth element of Xi
(t). Then ( )t

idx  
changes its value to 0 or 1 iteratively as follows, 

 
 

( ) ( 1) ( 1) ( 1)
1 2  ( ) + ( ),t t t t

id gdid id id idv v c p x c p x− − −= + − −  (3) 

 

( )
( )

1( ) ,
1 exp( )

t
id t

id

s v
v

=
+ −

 (4) 

if ( )( ),t
id ids vρ <  then ( )t

idx  = 1; else ( )t
idx  = 0, (5) 

where ( ) ,t
idv  pid and pgd are the dth elements of Vi

(t), Pi and Pg as defined previously, s(vid) 
is a sigmoid function to normalize the value of vid into [0.0, 1.0], and ρ id is a vector of 
random numbers drawn from a uniform distribution between 0.0 and 1.0. In these binary 
PSO operations, the velocity parameter ( )t

idv  acts as an individual’s disposition to make one 
or the other choice (i.e. to select the feature or not). If ( )t

idv  is high (s(vid) is close to 1.0), 
the individual ( )t

idx  is more likely to choose 1, and 0 otherwise. c1 and c2 are set to 2 in our 
experiments after some preliminary runs. In addition, the same parameter values for the 
population size and the number of generations of 40 and 20 were used for a fair com-
parison with GAFSS. 
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3.4 Combining Feature Relevance with GAFSS and PSOFSS 
 

We have explained GAFSS and PSOFSS feature subset selection methods as wrap-
per approaches with GA and PSO, respectively. GAFSS and PSOFSS simply rely on the 
classification accuracy (of a learning algorithm used in the wrapper) of candidate solu-
tions during the process of evolution. While the accuracy is the appropriate criterion to be 
considered, the relevance (or significance or goodness) of each feature can provide addi-
tional information and thus help produce the best feature subset. For instance, one of such 
relevance measures, the mutual information describes how two features are related to each 
other [28]. The relevance measures are actually the ones that have been applied in filter 
approaches for feature subset selection [3]. Here, we extend GAFSS and PSOFSS by in-
corporating the relevance of features and modifying the evolution operators accordingly. 

First, we need to determine the method for measuring the relevance of a feature. A 
variety of filter approaches have been proposed in the literature among which several 
methods were compared experimentally [3, 20, 21]. Based on the experimental results, 
we chose the mRMR method [13] that was based on mutual information and showed the 
best performance. The mutual information of two random variables is a quantity that 
measures their mutual dependence [27]. Generally, the mutual information of two dis-
crete random variables X and Y is defined as: 

( , )( ; ) ( , ) log ,
( ) ( )y Y x X

p x yI X Y p x y
p x p y∈ ∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑  (6) 

where p(x, y) is the joint probability distribution function of X and Y, and p(x) and p(y) 
are the marginal probability distribution functions of X and Y, respectively. Intuitively, 
the mutual information is to measure the information that X and Y share. In other words, 
it measures how much the knowledge on one variable reduces the uncertainty about the 
other. 

In mRMR, the mutual information between a feature and a class is used as the rele-
vance of the feature for the class. If there exist data D that consist of N features x1, x2, …, 
xN and a class c, then the relevance of feature xn (1 ≤ n ≤ N) is defined by the mutual in-
formation between feature xn and the class c: 

 
relevance(xn) = I(xn; c). (7) 
 

This reflects the dependency of feature xn on the target class c. The feature xi with the 
largest relevance has the largest dependency on the class. 

mRMR also considers the mutual information between features as the redundancy of 
each feature. The redundancy of feature xn in a feature subset FS is defined by following 
equation: 

,

1( ) ( ; ).
1

i n i

n i n
x x x FS

redundancy x I x x
FS ≠ ∈

=
− ∑  (8) 

This indicates the dependency of feature xn with other features. For example, when two 



FEATURE SUBSET SELECTION BASED ON BIO-INSPIRED ALGORITHMS 

 

1673 

 

features are highly dependent on each other, the class-discriminative power would not 
change much if one of them were removed. In this case, these two features are said to 
have high redundancy. We thus need to find features that have low redundancy in order 
to find mutually exclusive features. 

The criterion combining above two conditions is called Minimal-Redundancy and 
Maximal-Relevance (mRMR) [13]. It means that the goodness of a feature becomes larger 
if the feature has lower redundancy and higher relevance. A feature with low redundancy 
and high relevance implies that the feature is mutually exclusive to other features and 
highly dependent on the target class. The mRMR measure of feature xn is defined as: 

mRMR(xn) = relevance(xn) − redundancy(xn).  (9) 

To set the relevance of each feature, we first measure the mRMR values of all fea-
tures. We represent the mRMR values of features in D = {x1, x2, …, xN} as {m1, m2, …, 
mN}. Then we calculate the average ( )m  and the standard deviation (s) of the values as: 

1

1 ,
N

i
i

m m
N =

= ∑  (10) 

2

1

1 ( ) .
N

i
i

s m m
N =

= −∑  (11) 

Also, we divide the data D into three sets which satisfy D = D1 ∪ D2 ∪ D3: 

1 2 3| , | , | .
2 2 2 2i i i i i i
s s s sD x m m D x m m D x m m⎧ ⎫ ⎧ ⎫ ⎧ ⎫= − > = − ≤ − ≤ = − < −⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭
   (12) 

This is to separate the features into three different categories: features with higher mRMR 
values are in D1, lower mRMR values in D3, and others in D2. Choosing the half of the 
standard deviation as the threshold for this categorization of data is a simple heuristic 
determined based on results of several preliminary runs. Our approach to combine GAF- 
SS and PSOFSS with mRMR relevance measure is described in the remaining part of this 
section. 
 
3.5 GAFSS + mRMR 
 

GAFSS combined with mRMR (GAFSS + mRMR) is the same as simple GAFSS ex-
cept the mutation. The mutation processes of GAFSS and GAFSS + mRMR are shown in 
Algorithms 1 and 2, respectively. (The overall description on GAFSS was given in sec-
tion 3.2.) 

In GAFSS + mRMR, the relevance of a feature is checked before performing the 
mutation operation. When the value of a bit is about to change from 1 to 0, the mutation 
is actually happening only if the corresponding feature is not in D1. This means that the 
feature is not removed from the feature subset if it is presumed to be relevant (in terms of 
mRMR). Similarly, the mutation of a bit from 0 to 1 occurs only if the feature is not in D3. 
This means that the feature is not added to the feature subset if it is presumed to be irre- 
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Algorithm 1: GAFSS 
N: Size of population 
n: Number of bits in an individual 
G1 = {xi1, xi2, …, xin}: List of features (xn = 0 or 1) for individual i 
Pm: Probability of mutation (0 < Pm < 1) 
… 
/* Do Mutation */ 
For i = 1 to N 
    For j = 1 to n 
        get random value rand (0 < rand < 1) 
        If (rand < Pm) 
            If (xij == 0) then xij = 1 
            Else If (xij == 1) then xij = 0 
        End if 
    End for 
End for 
… 

 
Algorithm 2: GAFSS + mRMR 
N: Size of population 
n: Number of bits in an individual 
G1 = {xi1, xi2, …, xin}: List of features (xn = 0 or 1) for individual i 
Pm: Probability of mutation (0 < Pm < 1) 
… 
/* Do Mutation */ 
For i = 1 to N 
    For j = 1 to n 
        get random value rand (0 < rand < 1) 
        If (rand < Pm) 
            If (xij == 0) 
                If (xj ∈ D3) then xij = 0 
                Else xij = 1 
            Else If (xij == 1) 
                If (xj ∈ D1) then xij = 1 
                Else xij = 0 
        End if 
    End for 
End for 
… 

 
levant. By combining GAFSS and mRMR in this fashion, we control the mutation process 
and attempt to include features of high significance and to exclude features of low sig-
nificance, which could improve the performance of GAFSS. 

 
3.6 PSOFSS + mRMR 
 

Similar to GAFSS + mRMR, PSOFSS combined with mRMR (PSOFSS + mRMR) is 
the same as simple PSOFSS except the random process (Eq. (5)) which corresponds to 
the mutation step of GAFSS + mRMR in Algorithm 2. The basic operations of PSOFSS 
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and PSOFSS + mRMR (except the pbest and gbest determination steps) are shown in 
Algorithms 3 and 4, respectively. (The overall description on PSOFSS was given in sec-
tion 3.3.) 

 
Algorithm 3: PSOFSS 
N: Number of particles 
D: Number of bits in particle (number of full features) 
T: Number of iteration 

  

( ) ( ) ( )( )
1 2= ( , , , ):t t tt

i iDi iX x x x…  List of features (xn = 0 or 1) for particle i 

    
( ) ( ) ( )( )
1 2= ( , , , ):t t tt

i iDi iV v v v…  Velocity of ith particle at iteration t 
Pi = (pi1, pi2, …, piD): pbest of particle i 
Pg = (pg1, pg2, …, pgD): gbest 
c1, c2: cognitive parameters 
… 
For t = 1 to T 
    For i = 1 to N 
        For d = 1 to D 

            

 

( ) ( 1) ( 1) ( 1)
1 2

( )
( )

( ) ( )
1( )

1 exp( )

t t t t
id gdid id id id

t
id t

id

v v c p x c p x

s v
v

− − −= + − + −

=
+ −

 

            Get random a value ρid (0.0 ≤ ρid ≤ 1.0) 
            If (ρid < ( )( ))t

ids v  then  
( ) = 1t
idx  

            Else ( ) 0t
idx =  

        End for 
    End for 
End for 
… 

 
Algorithm 4: PSOFSS + mRMR 
N: Number of particles 
D: Number of bits in particle (number of full features) 
T: Number of iteration 

   
( ) ( ) ( )( )
1 2 = ( , , , ):t t tt

i iDi iX x x x…  List of features (xn = 0 or 1) for particle i 
   

( ) ( ) ( )( )
1 2( , , , ):t t tt

i iDi iV v v v= …  Velocity of ith particle at iteration t 
Pi = (pi1, pi2, …, piD): pbest of particle i 
Pg = (pg1, pg2, …, pgD): gbest 
c1, c2: cognitive parameters 
… 
For t = 1 to T 
    For i = 1 to N 
        For d = 1 to D 

            
 

( ) ( 1) ( 1) ( 1)
1 2

( )
( )

( ) ( )
1( )

1 exp( )

t t t t
id gdid id id id

t
id t

id

v v c p x c p x

s v
v

− − −= + − + −

=
+ −
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             Get a random value ρid (0.0 ≤ ρid ≤ 1.0) 
             If ( )( ( ))t

id ids vρ <  
                If (xd ∈ D3) then ( ) 0t

idx =  
                Else ( ) 1t

idx =  
             Else 
                If (xd ∈ D1) then ( ) 1t

idx =  
                Else ( ) 0t

idx =  
             End if 
        End for 
    End for 
End for 
… 

 
As shown in Algorithm 4, the relevance of a feature is checked if it is in D1 or D3 in 

PSOFSS + mRMR. When the value of a bit is to be set 1 (i.e. for high velocity), the rele-
vance of the feature is checked to see if it is in D3, in which case the value is set to 0. 
Similarly, when the value of a bit is to be set 0 (i.e. for low velocity), the relevance of the 
feature is checked to see if it is in D1, in which case the value is set to 1. By following 
this method, we attempt to include features of high significance and to exclude features 
of low significance, which could improve the performance of PSOFSS. 

4. EXPERIMENTS  

4.1 Dataset 

20 real-world datasets were used in our experiments. All the datasets are from the 
UCI Machine Learning Repository [30] and summarized in Table 1. Though some of the 
datasets consist of about 20 features, most of them have large number of features, so they 
are appropriate to the feature subset selection task. The datasets are also diverse in terms 
of the number of classes and samples, as well. (For detailed descriptions on each dataset, 
see [30].) 

4.2 Experimental Setup 

Our experiments were conducted with three purposes. First, we compared the per-
formance of GAFSS and PSOFSS with some of the existing feature subset selection me-
thods. For this comparison, we chose the following five methods: mRMR [13], Mutual 
Information Measurement (MI) [28], I-RELIEF [14], INTERACT [16], and PAM [17]. 
These methods have been recently introduced and demonstrated as competitive feature 
subset selection methods. The five methods were used as a filter to inductive learning 
algorithms to construct the classifier. In other words, each method produced a feature 
subset based on its selection criterion that would be used in the learning algorithm (See 
the references and our previous publications [20, 21] for detailed descriptions on the se-
lection methods and preliminary experimental results.) So we compared the performance 
of seven approaches (i.e. GAFSS, PSOFSS, MI, mRMR, I-RELIEF, INTERACT, PAM). 
We compared them in terms of the number of selected features and the classification ac-  
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Table 1. Datasets. 
Name Features Classes Samples

Audiology 69 24 226 
Dermatology 33 6 366 

Musk 166 2 475 
Spambase 57 2 4601 

Arrhythmia 277 16 452 
Ionosphere 34 2 351 
Waveform 21 3 5000 

Sonar 60 2 208 
Image Segmentation 19 7 2310 

Flag 28 6 194 
Hepatitis 19 2 155 

Lung Cancer 56 3 32 
Promoter 56 2 106 

Splice 60 3 3190 
Optdigits 64 10 3823 
SpectF 44 2 267 

Connect-4 42 3 691 
Water Treatment 38 13 527 

Isolet 617 26 6236 
HDR Multifeature 649 10 2000 

curacy with the feature subset. For the five filter approaches, we reorganized the datasets 
using selected (reduced) features by each method on which the learning algorithms were 
applied. The number of selected features for the filter approaches was determined as fol-
lows: For MI, mRMR, and I-RELIEF, features were added to the feature subset in an in-
cremental way (starting from an empty set) with respect to their selection criteria and the 
best feature subset (with the highest classification accuracy) was produced; for INTER-
ACT and PAM, features were selected as suggested by the authors in the references and 
available software. As mentioned earlier, we went through twenty iterations (i.e. genera-
tions) with forty individuals (i.e. chromosomes or particles) for the two bio-inspired ap-
proaches. This work is an extension of our previous research in [3, 19] where the former 
is a GA-based approach that is similar to GAFSS, and the latter is an ACO-based ap-
proach that produced fairly comparable performance to GAFSS. Note that the main con-
tribution of this paper is the introduction of GAFSS + mRMR and PSOFSS + mRMR 
which are improvements over GAFSS and PSOFSS. 

In the second experiment, we compared the performance of GAFSS and PSOFSS 
with their variants (i.e. GAFSS + mRMR, PSOFSS + mRMR). For the variants, the same 
number of iterations, the size of population, and other parameters were used as in GAFSS 
and PSOFSS. In addition to the feature subset size and the classification accuracy, we 
also compared the learning curves in this experiment. This is to check the evolution 
speed and to figure out how fast each approach converges to the best solution. 

In the third experiment, we explored the effectiveness of our approaches in selecting 
an appropriate subset of relevant features in the presence of redundant or useless features 
so as to maximize the accuracy of the resulting classifiers. Since it is not so easy to judge 
the usefulness of the features in real-world datasets without domain knowledge, we chose 
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one of the common artificial datasets, parity (3-bit and 6-bit), constructed as follows: The 
original features are replicated once (to introduce redundancy) thereby doubling the num- 
ber of features. Then an additional set of irrelevant features are generated and are assign- 
ned random boolean values. For 3-bit parity, 100 7-bit random vectors were generated 
and augmented with the 6-bit vectors (corresponding to the original 3 bits plus and iden-
tical set of 3 bits). In the same way, 100 12-bit random vectors were generated and aug-
mented with 12-bit vectors (6 original bits and 6 identical bits) for 6-bit parity. 

We used Weka [31] for our experiments. Weka is a well-known open-source data 
mining software based on JAVA, equipped with a variety of machine learning algorithms. 
Among those algorithms [27-29], three popular ones are adopted in our experiments: 
Naïve Bayes (NB) [32], Decision Tree (C4.5) [33], and Support Vector Machines (SVM) 
[34] with linear kernel. (See the references for detailed descriptions on the algorithms.) 
We conducted 10-fold cross-validation in all experiments. 

5. RESULTS 

5.1 Comparison Between Bio-Inspired Methods and Existing Methods 

First, we computed the classification accuracy of data with all features (i.e. full fea-
ture set) using the three learning algorithms. The results are shown in Table 2. Then we 
carried out feature subset selection on the datasets using the seven methods (shown in 
Tables 3-5 with the classification accuracy and the feature subset size), and compared 
their performance with the results in Table 2. 

Table 2. Classification accuracies with all features (%). 
Name Acc (NB) Acc (C4.5) Acc (SVM)

Audiology 73.45 77.88 81.86 
Dermatology 97.54 90.98 95.36 

Musk 73.68 78.95 82.74 
Spambase 79.29 92.61 90.42 

Arrhythmia 59.07 66.37 67.70 
Ionosphere 84.62 88.60 89.17 
Waveform 78.20 75.60 81.22 

Sonar 65.38 69.23 73.56 
Image Segmentation 79.87 87.84 85.80 

Flag 56.19 70.62 64.43 
Hepatitis 85.16 79.35 85.81 

Lung Cancer 62.50 59.38 50.00 
Promoter 82.08 82.08 82.08 

Splice 91.25 92.60 84.55 
Optdigits 91.66 89.62 98.14 
SpectF 68.54 73.78 79.18 

Connect-4 54.85 63.68 63.82 
Water Treatment 74.76 70.02 78.75 

Isolet 84.35 83.24 96.81 
HDR Multifeature 95.35 94.60 98.40 

Average 76.89 79.35 81.49 
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Table 3. Classification accuracies of feature subset selection methods (%)-NB. 
NB MI mRMR I-RELIEF INTERACT PAM GAFSS PSOFSS 

 Acc #F Acc #F Acc #F Acc #F Acc #F Acc #F Acc #F 
Audiology 75.7 21 75.7 21 75.2 45 72.6 21 74.8 39 76.6 39 78.3 36 

Dermatology 98.4 23 98.6 24 98.1 24 97.3 18 97.5 33 99.2 25 99.2 15 
Musk 76.8 55 80.2 80 75.4 69 71.6 16 75.4 61 79.6 66 81.7 74 

Spambase 90.1 30 90.4 22 84.4 15 82.6 30 79.8 46 89.5 29 90.1 26 
Arrhythmia 68.4 41 69.9 54 67.5 16 68.1 23 63.5 124 67.7 88 70.7 119 
Ionosphere 89.2 13 90.3 12 88.6 18 88.3 18 85.5 24 91.0 15 91.7 16 
Waveform 78.2 16 78.6 16 78.6 16 78.3 19 78.3 19 79.4 15 79.5 13 

Sonar 69.7 6 79.2 9 74.5 17 69.2 17 70.2 8 75.5 25 76.9 15 
Image Segmentation 80.8 13 82.4 6 81.3 17 82.6 13 80.7 12 84.9 9 84.9 10 

Flag 68.0 6 69.6 4 69.6 4 58.3 9 56.2 16 70.6 11 72.2 14 
Hepatitis 84.5 16 86.5 4 84.5 17 83.9 9 83.2 11 89.7 8 90.3 7 

Lung Cancer 78.1 5 84.4 6 75.0 10 75.0 8 62.5 22 84.4 28 87.5 21 
Promoter 91.5 23 98.1 40 98.1 38 89.6 13 85.9 30 92.5 33 94.3 27 

Splice 91.7 43 91.7 31 91.7 53 91.0 31 91.4 57 91.4 33 91.6 38 
Optdigits 91.6 63 92.4 45 92.5 45 91.6 21 92.3 47 92.7 36 93.2 33 
SpectF 74.9 3 74.9 9 74.9 3 73.0 15 71.2 26 79.4 1 79.0 7 

Connect-4 65.3 6 65.4 4 65.0 4 63.7 9 54.9 40 66. 12 68.7 11 
Water Treatment 74.2 32 75.9 22 75.9 17 75.3 16 73.2 32 78.9 15 79.3 20 

Isolet 84.4 357 82.6 495 X X 85.3 57 84.7 594 89.1 284 89.6 284 
HDR Multifeature 95.6 420 95.4 402 X X 96.6 131 95.1 564 96.4 313 96.7 301 

Average 81.4 − 83.1 − 80.6 − 79.7 − 77.8 − 83.7 − 84.8 − 

Table 4. Classification accuracies of feature subset selection methods (%)-C4.5. 
C4.5 MI mRMR I-RELIEF INTERACT PAM GAFSS PSOFSS 

 Acc #F Acc #F Acc #F Acc #F Acc #F Acc #F Acc #F 
Audiology 77.9 21 77.9 21 77.9 26 77.9 21 77.9 39 78.3 33 78.3 41 

Dermatology 93.2 22 92.9 23 92.9 23 92.4 18 91.0 33 95.9 11 95.9 19 
Musk 82.7 89 82.7 76 83.2 131 77.1 16 81.1 61 84.0 84 88.0 79 

Spambase 93.0 17 93.3 26 93.2 49 92.8 30 92.9 46 93.1 37 93.8 26 
Arrhythmia 70.6 21 70.6 18 69.7 34 70.1 23 67.7 124 72.4 111 73.2 112 
Ionosphere 89.2 28 89.7 27 88.6 18 86.9 18 88.6 24 92.0 14 91.2 15 
Waveform 76.4 11 76.2 15 76.4 15 75.7 19 75.8 19 76.8 15 77.6 13 

Sonar 78.4 11 80.3 8 74.5 3 76.4 17 71.2 8 78.9 23 84.1 24 
Image Segmentation 88.1 14 88.1 14 88.1 14 87.8 13 87.7 12 88.1 14 88.2 11 

Flag 73.2 3 73.7 6 73.2 8 73.7 9 73.2 16 73.7 9 74.2 12 
Hepatitis 81.9 13 83.2 1 81.9 12 82.6 9 81.9 11 85.8 5 85.8 4 

Lung Cancer 68.8 5 59.4 5 65.6 6 62.5 8 59.4 22 71.9 5 71.9 25 
Promoter 87.7 4 100 38 100 38 83.0 13 72.6 30 86.8 12 86.8 25 

Splice 94.4 12 94.4 13 94.5 14 93.2 31 92.7 57 94.5 33 94.7 27 
Optdigits 89.8 60 89.7 56 89.6 53 89.8 21 89.4 47 90.0 33 90.4 35 
SpectF 79.4 1 82.4 20 79.4 2 74.2 15 74.5 26 83.5 10 86.1 15 

Connect-4 67.0 3 66.7 6 67.4 2 65.0 9 64.0 40 70.2 16 70.3 19 
Water Treatment 71.2 36 72.3 24 73.4 11 68.9 16 66.8 32 72.9 19 76.3 19 

Isolet 80.3 429 83.1 273 X X 80.4 57 83.1 594 83.6 325 84.6 313 
HDR Multifeature 94.1 458 94.9 55 X X 93.7 131 93.8 564 96.4 312 96.7 320 

Average 81.9 − 82.6 − 81.6 − 80.2 − 79.3 − 83.4 − 84.4 − 

 
Tables 3-5 are with the NB, C4.5, and SVM algorithms, respectively. The highest 

classification accuracy is underlined and bold-faced for each dataset. Note that the X’s in 
those tables are due to the limited capability of I-RELIEF in subset selection for high- 
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Table 5. Classification accuracies of feature subset selection methods (%) – SVM. 
MI mRMR I-RELIEF INTERACT PAM GAFSS PSOFSS SVM Acc #F Acc #F Acc #F Acc #F Acc #F Acc #F Acc #F 

Audiology 81.9 48 82.3 46 82.3 49 76.1 21 78.3 39 85.8 43 85.8 42 
Dermatology 98.1 23 97.5 24 97.5 24 96.7 18 95.4 33 98.6 22 98.9 19 

Musk 83.8 110 84.8 153 83.4 157 71.2 16 77.5 61 85.3 95 85.9 79 
Spambase 90.4 54 90.5 54 90.5 56 88.4 30 89.9 46 90.1 44 90.4 36 

Arrhythmia 70.8 30 71.5 27 71.2 45 69.7 23 69.5 124 73.0 133 74.3 128 
Ionosphere 89.2 17 89.2 25 89.2 33 88.3 18 87.2 24 90.6 19 92.3 17 
Waveform 81.4 18 81.6 19 81.6 18 81.4 19 81.4 19 81.4 19 81.6 18 

Sonar 77.4 23 80.3 15 78.4 33 75.0 17 75.0 8 81.7 21 84.6 28 
Image Segmentation 85.8 18 85.8 16 85.8 17 85.1 13 85.0 12 86.1 13 86.2 16 

Flag 63.9 18 66.5 23 66.0 21 57.2 9 62.4 16 66.5 17 69.1 22 
Hepatitis 83.9 15 85.2 13 83.9 9 84.5 9 82.6 11 88.4 9 89.7 13 

Lung Cancer 75.0 7 78.1 38 81.3 25 65.6 8 75.0 22 78.1 26 87.5 18 
Promoter 86.8 18 100 38 100 38 88.7 13 80.2 30 96.2 33 95.3 31 

Splice 85.0 44 84.8 21 85.0 18 84.5 31 84.5 57 85.4 39 85.2 34 
Optdigits 98.2 63 98.3 47 98.3 45 96.2 21 98.2 47 98.2 44 98.3 44 
SpectF 79.8 36 79.8 38 79.4 1 79.4 15 79.4 26 79.4 1 79.4 8 

Connect-4 64.7 1 64.7 5 64.7 3 64.3 9 63.8 40 64. 20 64.8 21 
Water Treatment 78.8 36 79.1 36 78.6 26 73.4 16 76.3 32 79.5 26 79.9 27 

Isolet 94.8 354 96.9 402 X X 92.8 57 96.7 594 96.8 325 96.8 313 
HDR Multifeature 98.5 460 98.5 410 X X 98.5 131 98.3 564 99.1 312 99.5 320 

Average 83.4 − 84.8 − 83.2 − 80.9 − 81.8 − 85.2 − 86.3 − 

 
dimensional datasets like Isolet and HDR Multifeature. 

As we can see from the tables, most of the methods produced better performance 
with a reduced feature set than with the full feature set, regardless of the learning algo-
rithm. In particular, GAFSS and PSOFSS showed improved performance than filter ap-
proaches for most of the datasets. Furthermore, PSOFSS performed better than GAFSS 
for majority of the datasets with the three learning algorithms, producing higher average 
accuracy over all datasets. Therefore, we can conclude that our bio-inspired approaches, 
combined with popular learning algorithms, are very effective for feature subset selec-
tion, and PSOFSS is particularly the best approach for the task. 

As far as the learning time, filter approaches were faster due to its non-iterative cha-
racteristic. Precisely, GAFSS and PSOFSS are slower than mRMR proportional to the 
size of the population and the number of generations (e.g. 40 × 20 = 800 in our experi-
ments). However, this problem can be mitigated by one-time, offline learning that selects 
the optimal feature subset with the best classification accuracy. In addition, the evolu-
tionary approaches produced best solutions, swiftly converging to quality solutions in a 
small number of generations as shown in section 5.2. This verifies the practicality of our 
proposed approaches. 

5.2 Comparison Between Bio-Inspired Methods and Their Variants 

After the experiments were conducted under the same experimental setup as ex-
plained in section 4, the results of bio-inspired methods and their variants with mRMR 
are summarized in Tables 6-8 for the three learning algorithms. mRMR was chosen since 
its performance was either better than or comparable to other filter methods as shown 
Tables 3-5. 
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Table 6. Performance comparison of GAFSS and PSOFSS with their variants-NB. 
GAFSS GAFSS + mRMR PSOFSS PSOFSS + mRMR NB Acc #F Acc #F Acc #F Acc #F 

Audiology 76.55 39 77.43 36 78.32 36 77.88 33 
Dermatology 99.18 25 99.18 22 99.18 15 99.45 19 

Musk 79.58 66 83.37 53 81.68 74 84.00 72 
Spambase 89.52 29 89.11 30 90.11 26 91.31 21 

Arrhythmia 67.70 88 68.14 99 69.69 119 72.35 95 
Ionosphere 90.88 15 91.45 17 91.74 16 92.02 18 
Waveform 79.36 15 79.14 17 79.48 13 79.48 16 

Sonar 75.48 25 76.44 26 76.92 15 79.81 23 
Image Segmentation 84.85 9 84.85 9 84.85 10 84.85 10 

Flag 70.62 11 70.10 18 72.16 14 73.20 11 
Hepatitis 89.68 8 89.68 8 90.32 7 90.32 10 

Lung Cancer 84.38 28 84.38 21 87.50 21 90.63 25 
Promoter 92.45 33 93.40 32 94.34 27 95.28 30 

Splice 91.38 33 91.44 35 91.63 38 91.97 34 
Optdigits 92.73 36 93.60 39 93.23 33 93.70 39 
SpectF 79.40 1 79.40 1 79.03 7 79.40 10 

Connect-4 66.71 12 66.70 11 68.74 11 69.03 11 
Water Treatment 78.94 15 79.13 22 79.32 20 77.99 21 

Isolet 89.10 284 89.57 321 89.64 284 89.64 297 
HDR Multifeature 96.35 313 96.25 370 96.70 301 97.30 286 

Average 83.74 − 84.14 − 84.73 − 85.48 − 

Table 7. Performance comparison of GAFSS and PSOFSS with their variants-C4.5. 
GAFSS GAFSS + mRMR PSOFSS PSOFSS + mRMR C4.5 Acc #F Acc #F Acc #F Acc #F 

Audiology 78.32 33 78.32 33 78.32 41 78.32 36 
Dermatology 95.90 11 95.90 14 95.90 19 95.90 15 

Musk 84.00 84 85.26 74 88.00 79 89.26 82 
Spambase 93.13 37 93.70 32 93.81 26 93.61 25 

Arrhythmia 72.35 111 72.35 126 73.23 112 73.23 118 
Ionosphere 92.02 14 92.02 11 91.17 15 92.31 8 
Waveform 76.84 15 76.84 12 77.64 13 77.64 13 

Sonar 78.85 23 78.85 23 84.13 24 84.13 27 
Image Segmentation 88.10 14 88.14 15 88.23 11 88.23 12 

Flag 73.71 9 74.23 6 74.23 12 75.26 13 
Hepatitis 85.81 5 84.52 5 85.81 4 85.81 6 

Lung Cancer 71.88 5 71.88 16 71.88 25 71.88 22 
Promoter 86.79 12 86.79 17 86.79 25 86.79 26 

Splice 94.48 33 93.98 32 94.70 27 94.61 22 
Optdigits 90.03 33 89.69 36 90.40 35 91.43 35 
SpectF 83.52 10 83.52 10 86.14 15 84.64 5 

Connect-4 70.19 16 70.62 20 70.33 19 70.62 19 
Water Treatment 72.87 19 73.06 21 76.28 19 74.95 20 

Isolet 83.55 325 85.55 321 84.56 313 86.57 310 
HDR Multifeature 96.40 312 97.10 385 96.65 320 96.65 340 

Average 83.44 − 83.62 − 84.41 − 84.59 − 

 
In most cases, the modified methods using mRMR produced higher learning accura-

cies than plain GAFSS and PSOFSS. And overall, PSOFSS + mRMR showed the best 
performance among all the methods we considered. 
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Table 8. Performance comparison of GAFSS and PSOFSS with their variant − SVM. 
GAFSS GAFSS + mRMR PSOFSS PSOFSS + mRMR SVM Acc #F Acc #F Acc #F Acc #F 

Audiology 85.84 43 85.84 43 85.84 42 87.15 39 
Dermatology 98.63 22 98.91 18 98.91 19 98.91 17 

Musk 85.26 95 85.05 97 85.89 79 85.89 86 
Spambase 90.09 44 90.39 39 90.39 36 90.48 36 

Arrhythmia 73.01 133 75.45 158 74.25 128 75.45 158 
Ionosphere 90.60 19 90.31 17 92.31 17 91.45 15 
Waveform 81.42 19 81.42 19 81.60 18 81.60 18 

Sonar 81.73 21 82.21 26 84.62 28 83.65 31 
Image Segmentation 86.10 13 86.10 17 86.15 16 86.15 14 

Flag 66.49 17 69.55 15 69.07 22 71.65 17 
Hepatitis 88.39 9 86.45 11 89.68 13 89.68 10 

Lung Cancer 78.13 26 84.38 22 87.50 18 87.50 26 
Promoter 96.23 33 93.40 32 95.28 31 95.28 35 

Splice 85.36 39 85.36 33 85.17 34 85.30 31 
Optdigits 98.17 44 98.22 42 98.33 44 98.38 47 
SpectF 79.40 1 79.40 1 79.40 8 79.40 21 

Connect-4 64.83 20 64.83 20 64.83 21 64.83 16 
Water Treatment 79.51 27 80.08 27 79.89 27 81.21 24 

Isolet 96.75 356 96.90 356 96.75 313 97.43 324 
HDR Multifeature 99.10 315 99.45 315 99.53 320 99.53 325 

Average 85.25 − 85.69 − 86.27 − 86.55 − 

 
In addition to the analysis on the accuracy, we also compared the learning speed in 

order to see how fast the algorithm converges to the best solution. For PSOFSS and 
PSOFSS + mRMR, we chose four datasets and derived the learning curves (i.e. trace of 
the current best accuracy) as shown in Fig. 1. The graphs in Fig. 1 indicate that the ac-
curacy of PSOFSS + mRMR increases faster than PSOFSS. This shows another merit of 
the modified method that it quickly finds the optimal feature subset. 

 

 

  
Fig. 1. Comparisons of evolution speed between PSOFSS and PSOFSS + mRMR. The horizontal 
      axis means the number of iterations, and the vertical axis indicates the learning accuracy 

(%). 
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5.3 Quality of Feature Subsets 
 
Table 9 compares the performance of mRMR and PSOFSS + mRMR on the parity 

datasets (#rel means the number of relevant features in the selected subset of size #F). 
While the subsets produced by mRMR included irrelevant features which caused low 
classification accuracy, PSOFSS + mRMR successfully found appropriate sets of features 
with high accuracy. This demonstrates the outstanding capability of our approach in fea-
ture subset selection. 

Table 9. Feature subset comparison of mRMR and PSOFSS + mRMR. 
mRMR PSOFSS + mRMR Dataset Classifier Acc #F #rel Acc #F #rel 

NB 57.00 1 0 59.00 4 1 
C4.5 58.00 2 0 93.00 3 3 3-bit Parity 
SVM 57.00 1 0 57.00 2 1 
NB 54.69 1 0 54.69 4 3 

C4.5 56.25 12 4 62.81 7 3 6-bit Parity 
SVM 54.69 1 0 55.00 6 4 

6. CONCLUSION AND FUTURE WORK 

In this paper, we designed efficient methods, GAFSS and PSOFSS, for the feature 
subset selection task based on bio-inspired algorithms such as the genetic algorithm and 
the particle swarm optimization. We also proposed variants of those approaches consid-
ering the relevance of each feature, which produced novel algorithms called GAFSS + 
mRMR and PSOFSS + mRMR. 

The performance of GAFSS and PSOFSS are experimentally verified to outperform 
other state-of-the-art feature selection methods in terms of the classification accuracy and 
the quality of the feature subsets. Furthermore, GAFSS + mRMR and PSOFSS + mRMR 
demonstrated more improved performance over GAFSS and PSOFSS making use of the 
relevance information, in terms of both the learning accuracy and the evolution speed. 
Extensive experiments on various real-world data concluded the best performance with 
PSOFSS + mRMR. 

There are some avenues for future research. First, the relevance measure we con-
sidered in this paper is mRMR which maximizes the relevance and minimizes the redun-
dancy of features using the mutual information criterion. Based on mRMR, the data is 
divided into three different subsets which affect the feature selection process. Further 
studies on this procedure can be pursued. Also, research on various relevance measures 
can lead to the improvement of current algorithms.  

Second, we might need to consider more than a single criterion for the fitness func-
tion. For instance, we can consider the cost (or risk) associated with each feature as well, 
and attempt to minimize the total cost while maximizing the learning accuracy. This is 
basically multi-objective optimization, which occurs frequently in our daily lives (e.g. 
medical diagnosis). Solving a multi-objective optimization problem in the feature subset 
selection task using bio-inspired algorithms is clearly of interest. 
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Third, we can apply our idea to other existing bio-inspired algorithms (e.g. Ant Co-
lony Optimization (ACO) [24-26]) or develop new bio-inspired algorithms. 

Fourth, we can develop hybrid approaches for the feature subset selection task. 
While the bio-inspired algorithms are very successful in finding good solutions, they 
may require quite amount of time for evolution. We might as well develop hybrid ap-
proaches (e.g. combining bio-inspired approaches with filter approaches or simple ran-
domized search) to reduce the computational overhead. 

Lastly, we can look into the feature subsets produced by different approaches and 
elicit the optimal subset by coalescing them based on the consensus among the ap-
proaches (e.g. ensemble learning). 
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