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On-the-Fly Maximum-Likelihood Decoding of Raptor Codes

over the Binary Erasure Channel

Saejoon KIM, Seunghyuk LEE", Nonmembers, Jun HEO'', and Jongho NANG', Members

SUMMARY In this letter, we propose an efficient on-the-fly algorithm
for maximum-likelihood decoding of Raptor codes used over the binary
erasure channel. It is shown that our proposed decoding algorithm can re-
duce the actual elapsed decoding time by more than two-thirds with respect
to an optimized conventional maximum-likelihood decoding.
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1. Introduction

Fountain codes are rateless erasure correcting codes that can
generate, on-the-fly, as many encoding symbols as neces-
sary for reliable transmission of data. Raptor codes [4] are
a realization of fountain codes that are universally capacity-
achieving over the binary erasure channel (BEC). For Rap-
tor codes of finite lengths, it is known that maximum-
likelihood (ML) decoding can provide noticeably superior
performance to the linear-time message-passing decoding
[3]. Furthermore, there exist efficient implementations of
ML decoding of Raptor codes so that ML decoding is com-
putationally feasible for finite code lengths [2], [S].

In a conventional ML decoding of Raptor codes, de-
coding begins only after enough encoding symbols have
been received which can necessitate a peak in decoder’s pro-
cessing load at the end of data reception. Thus the decoder’s
processing of Raptor codes is in direct contrast with the en-
coder’s processing in which encoding symbols are gener-
ated on-the-fly. Moreover, conventional decoding can lead
to an increase in decoder’s processing speed requirements
for real-time applications. To this end, we propose an on-
the-fly ML decoding of Raptor codes in which decoding
is processed as encoding symbols are received. It will be
shown that our proposed decoding algorithm can reduce the
actual decoding time elapsed by more than % compared to
the optimized conventional ML decoding of [2]. In a related
work, on-the-fly decoding of LT codes [3] has recently been
presented in [1] where decoding time reduction of less than
30% with respect to a standard Gaussian elimination (GE)
was obtained. We note that the ML decoding algorithm of
[2], to which our proposed algorithm will be compared, runs
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considerably faster, i.e., > 100 times, than a standard GE.
2. ML Decoding of Raptor Codes

We shall consider the Raptor codes defined in the 3GPP
standard [5] that give excellent performance when ML de-
coded, and which consist of a pre-code and an LT code in
a serially concatenated fashion. Let us denote the message
symbols of length k by m, and the intermediate symbols of
length k + Ak corresponding to the codeword of the pre-code
by m. Here, Ak is the amount of redundancy added by the
pre-code. This 1 is then encoded by the LT code to a stream
of encoding symbols which is then transmitted. Let ¢ and €&
represent the received encoding symbols of length n, and the
concatenation of 0°f and ¢ where 0¥ is the all-zero symbol
string of length Ak, respectively. Here, m and ¢ are related
by Af' = ¢ where A is an n + Ak by k + Ak matrix and
the superscript ¢ represents the transpose operator. In A, the
top Ak rows represent the constraints of the pre-code on m,
and the bottom n rows, each corresponding to a received en-
coding symbol of ¢, represent the generator matrix of the LT
code. Raptor codes of [5] were designed so that the orig-
inal message m can be computed very efficiently given m,
and therefore ML decoding of Raptor codes essentially re-
duces to GE of the matrix A. We briefly summarize a time-
efficient implementation of it that was introduced in [5] and
improved in [2] as our on-the-fly algorithm is a modification
of [2].

The time-efficient implementation of [2] and [5] con-
sists of four phases after which the original matrix A is con-
verted into an identity matrix through row/column exchange
and row addition. In the first phase, the matrix A is con-
verted into a matrix consisting of left upper identity subma-
trix, left lower all-zero submatrix, and a right submatrix. To
convert the matrix A into this form, another matrix V will
be utilized which is formed by the intersection of all but the
first i columns and the last # columns, and all but the first i
rows of A for nonnegative integers i and u. Initially i and u
are both set to 0 and therefore V = A. During the course of
the first phase, the values of i and u will increase and hence
the matrix V will change, and if the phase ends successfully,
V will disappear, i.e., i + u = k + Ak.

In a nutshell, the first phase proceeds as follows [2]. A
row with the minimum positive weight, say, » in V is chosen
for processing and it is exchanged with the first row of V.
Then the columns of V are rearranged such that the column
of V of one of the r 1’s in the chosen row is exchanged with
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the first column of V and the columns of the remaining r — 1
I’s are exchanged with the last columns of V. All rows of
V that have a 1 in the first column of V are exclusive-ORed
with the first row of V so that all rows below it have a 0 in
the first column of V. The value of i is incremented by 1 and
that of u is incremented by r — 1, and this process is iterated
repeatedly until no row of positive weight in V can be found.

The goal of the first phase is to make i as large as pos-
sible by processing rows of weight two that are contained
in components of maximum size [5] or that have the highest
score [2]. We note that a component is roughly defined as
the set of rows of weight two in which every row shares a
column index of 1’s locations with another row in the set.
Thus, the number of non-zero columns in this component,
called the component size, is at most one more than that of
rows in the component. Then, when a row in a component
of size s is chosen for processing, it will cause all the other
rows in the component to be chosen sequentially so that i is
incremented by s — 1 and u is incremented by 1. The score
is defined similarly as the component size, and whenever a
row of score s is processed, i is incremented by s — 1 and u
is incremented by 1. By abuse of terminology, we will call
a component the set of columns that are processed as the re-
sult of processing a row by either scheme. Through using
the score [2] as the criteria for row selection this phase can
be implemented in linear-time.

Denoting by U, and U, the first i and the remaining
rows of the rightmost u columns, a standard GE is applied
to U, to convert it into a matrix where the first u rows is
the identity matrix in the second phase. If this is successful,
then the bottom n — k rows of A are discarded and the result-
ing matrix is a square matrix of size k + Ak with 1’s along
the diagonal. In the remaining phases three and four, the
submatrix U, is converted into an all-zero matrix through
basic operations with the bottom u rows after which A be-
comes the identity matrix. The computational bottleneck of
the described algorithm is clearly the second phase where
cubic-time is required for the standard GE.

3. On-the-Fly ML Decoding of Raptor Codes

On-the-fly decoding allows one to start the decoding process
as encoding symbols are received rather than wait until the
reception of enough encoding symbols. A goal of it is to
distribute the decoding process with respect to the number
of encoding symbols received so that once enough encoding
symbols are received, the required time for decoding com-
pletion can be much shorter than otherwise. Hereafter, we
will assume that n encoding symbols are necessary for suc-
cessful decoding and that decoding begins after g fraction
of these encoding symbol are received where ¢ is a free pa-
rameter.

To construct an efficient on-the-fly ML decoding of
Raptor codes, we shall modify the efficient ML decoding al-
gorithm of [2] described in the previous section which is the
currently known fastest ML decoding algorithm for Raptor
codes. As this algorithm consists of four phases where the

1063

first phase can be processed in linear-time while the second
phase requires cubic-time, a natural approach is to process
the first phase on-the-fly as much as possible and process
the remaining phases once enough encoding symbols are re-
ceived. As the decoding time required for second through
fourth phases depends on the size of u, we wish to make it
small. On the other hand, since the size of u is the number of
components processed in the first phase, these components
need be of large size in order to minimize u’s value.

Now consider the process of receiving encoding sym-
bols during which our proposed algorithm proceeds with the
first phase as follows. First, if an encoding symbol corre-
sponding to a weight one row is received, it is processed
immediately as it will not be helpful not do to otherwise.
Likewise, if an encoding symbol corresponding to a row of
weight greater than two is received, it is not processed im-
mediately as it will greatly increase the value of u if done
otherwise. Hence, it suffices to consider the case when an
encoding symbol corresponding to a row of weight two is
received hereafter. The goal of our proposed algorithm is to
select a row of weight two for processing not too often, as
encoding symbols are received, so that the size of its com-
ponent is not small. However, a row of weight two should
be selected for processing often enough so that the decoding
process is being well distributed with respect to the recep-
tion of encoding symbols. In particular, the size of the com-
ponent chosen for processing cannot be too big for real-time
implementations. To this end, let us define the progress rate
function, P(x), as
no o i+u

k+nk x

which represents the fraction of processed columns, i.e.,
i + u, with respect to the number of received encoding sym-
bols x normalized such that P(n) = 1. Note that P(gn) = 0
since decoding begins after gn encoding symbols are re-
ceived. Because the value of i + u is calculated anyway dur-
ing decoding [2],[5], P(x) can be calculated immediately
with little additional computational cost. The progress rate
function tells us that if its value is large, then the size of
the largest component will likely be small since there are
only a few unprocessed columns left. On the other hand, the
function implies that if its value is small, then the decod-
ing process is not being well distributed. Thus the progress
rate function P(x) provides a guideline for the selection of
a weight two row for processing. Specifically, we have ob-
served empirically that the value of P(x) should start small
and get increasingly larger as x increases in order for the size
of the processed components to remain approximately con-
stant and not large. For this matter, let us define the criterion
function, C(x), as

C 2 _[(1 1q) (1 - %)

where 1 < r € R is a variable to be optimized and gn <

x < n. This function was designed to possess the following
three properties: C(gn) = 0, C(n) = 1, and convexity. These

P(x) =

>

+1




1064

Criterion Function C(x)
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Fig.1  Plots of C(x) for g = 0.5.

properties clearly allow us to assume that if a row of weight
two associated with the largest component is chosen for pro-
cessing whenever P(x) < C(x), then we can expect the size
of the processed component to be neither large nor small for
a suitably chosen r which can be determined through sim-
ulations. We will demonstrate the validity of this argument
empirically in the next section. By selecting a weight two
row for processing in this way, P(x) will look like a stair-
case function that increases along the curve of C(x). We
will call this on-the-fly algorithm method 1. We note that
since P(x) and C(x) can both be calculated on-the-fly, the
inequality can also be tested on-the-fly. Examples of plots
of C(x) for k = 1000, € = 0.01 and g = 0.5 where € 2 ’;1 -
forr=1,2,---,5 are shown in Fig. 1.

To prevent the possible case of an abrupt jump in the
value of P(x) by method 1 which will occur if the size of a
processed component is large, we also tried a second method
in which a component is processed if P(x) < C(x) but
stopped when P(x) = C(x). In other words, in this method,
a component chosen for processing may not be completely
processed when the associated encoding symbol is received
and the remaining set of unprocessed columns, if any, will
be processed after the next encoding symbol is received
with the same processing criteria. We will call this algo-
rithm method 2. In both methods, all remaining unprocessed
columns, if any, are processed after n encoding symbols are
received.

4. Results

In this section, we present the elapsed decoding times of
method 1 and method 2, and compare them to those using
the optimized conventional ML decoding of [2]. All sim-
ulations here have been tested on Intel(R) Xeon(R) CPU
@1.60 GHz and the results correspond to the case k = 1000
and n = 1010. Table 1 lists the decoding times elapsed (in
milliseconds) of the first and all four phases, and the size
of u when g = 0.5. The decoding time elapsed of the first
phase is defined here as that starting when n encoding sym-
bols have been received for a fair comparison with the con-
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Table1 Decoding times (ms) and size of # when g = 0.5.

r=1 r=2 r=3 r=4 r=5
method 1 (first phase) 0.01 0.01 0.05 033 0.56
method 1 (total) 1.21 071 0.61 0.8 1
method 1 (size of u)  145.99 100.36 82.26 73.44 69.07

method 2 (first phase) 0.04  0.15 03 045 06
method 2 (total) 125 085 088 095 1.05
method 2 (size of u)  146.17 100.48 82.28 73.53 69.08

Table 2  Decoding times (ms) and size of # when g = 0.9.

r=1r=15 r=2 r=25 r=3
method 1 (first phase) 0.01  0.01 0.02 0.12 0.33
method 1 (total) 0.54 0.5 047 055 0.74
method 1 (sizeof u)  79.77 72.02 68.01 65.65 64.05

method 2 (first phase) 0.07 0.15 025 035 045
method 2 (total) 061 062 068 078 0.85
method 2 (sizeof u)  79.8 72.05 68.04 65.66 64.05

Table3  Decoding times (ms) and size of u of [2].
first phase  1.35 total 1.8 sizeof u  50.43

ventional decoding. The table shows that as r increases, the
size of u decreases, and hence also the combined decoding
times of second through fourth phases, as expected. Also
shown in the table is the trend that decoding times of the first
phase increase as r increases since there remain more unpro-
cessed columns left when n encoding symbols have been re-
ceived for larger values of r. In total decoding times elapsed,
method 1 and method 2 showed the best performance when
r = 3 and r = 2, respectively. We note that these decoding
times can be improved by better selection of the value of r
which need not be an integer.

Table 2 lists a similar trend of results for g = 0.9 case.
Here, method 1 and method 2 showed the best total decoding
times elapsed when r = 2 and r = 1, respectively. Tables 1
and 2 indicate that it is not necessarily beneficial to start
decoding early as results for g = 0.9 case are clearly better
than those for g = 0.5. This can be explained by the fact that
small values of ¢ translate to large sizes of u (a bad effect)
but also fast decoding times of the first phase (a good effect)
given everything else, e.g., r, held constant. Thus a balance
between the two effects must be considered for better overall
performance.

Table 3 lists the corresponding results of the optimized
conventional ML decoding [2]. Comparing with method 1
(r = 2) and method 2 (r = 1) of Table 2, the proposed
on-the-fly decoding clearly provides reduction in total de-
coding time by more than % over the conventional decoding.
The size of u of the on-the-fly decoding algorithm is inher-
ently larger than that of the conventional ML decoding as
can be verified in Tables 2 and 3. While this fact is disad-
vantageous to our proposed on-the-fly decoding algorithm
for very large code lengths, for code lengths as those sup-
ported in the 3GPP standard [5], the difference in the sizes
will be too small to have significant effect in total decoding
time elapsed.
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Figure 2 shows the average sizes of the components
processed by the two best methods from each of Tables 1
and 2, and Fig. 3 shows a closer view of the same figure for x
close to n. As claimed in the previous section, the size of the
processed components is relatively small until x becomes
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very close to n even after which it does not get too large. In
particular, it remains relatively constant and small in method
2 for x less than n as expected. Note that this characteristic
of processed components is important since it enables our
on-the-fly decoding to be processed concurrently with data
reception without delay.

5. Conclusion

We have proposed an efficient on-the-fly algorithm for ML
decoding of Raptor codes that can reduce the actual decod-
ing time elapsed by more than % with respect to an opti-
mized conventional ML decoding. By properly adjusting
the values of ¢ and 7 in the criterion function, we believe the

improvement can be higher than %
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